6 research outputs found

    Renormalization Group Functions of the \phi^4 Theory in the Strong Coupling Limit: Analytical Results

    Full text link
    The previous attempts of reconstructing the Gell-Mann-Low function \beta(g) of the \phi^4 theory by summing perturbation series give the asymptotic behavior \beta(g) = \beta_\infty g^\alpha in the limit g\to \infty, where \alpha \approx 1 for the space dimensions d = 2,3,4. It can be hypothesized that the asymptotic behavior is \beta(g) ~ g for all values of d. The consideration of the zero-dimensional case supports this hypothesis and reveals the mechanism of its appearance: it is associated with a zero of one of the functional integrals. The generalization of the analysis confirms the asymptotic behavior \beta(g)=\beta_\infty g in the general d-dimensional case. The asymptotic behavior of other renormalization group functions is constant. The connection with the zero-charge problem and triviality of the \phi^4 theory is discussed.Comment: PDF, 17 page

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Full text link
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    corecore